求$\lim\limits_{x \to \infty} I_n$,其中 \(I_n=\int_1^{1+\frac{1}{n}}\sqrt{(1+x^n)}dx\)
解: 由于 \(1 \leq x \leq 1+\dfrac{1}{n}\)
从而有 \(\sqrt{2} \leq \sqrt{1+x^n} \leq \sqrt{1+(1+\dfrac{1}{n})^n}\)
由积分的保序性,可知 \(\sqrt{2}\int_1^{1+\frac{1}{n}}dx \leq I_n \leq \sqrt{1+(1+\dfrac{1}{n})^n}\int_1^{1+\frac{1}{n}}dx\)
进而得到 \(\dfrac{\sqrt{2}}{n} \leq I_n \leq \dfrac{1}{n} \sqrt{1+(1+\dfrac{1}{n})^n}\)
容易证明$\lim\limits_{n \to \infty} \dfrac{\sqrt{2}}{n} = 0$,$\lim\limits_{n \to \infty} \dfrac{1}{n} \sqrt{1+(1+\dfrac{1}{n})^n} = 0$
根据夹逼定理,则有$\lim\limits_{x \to \infty} I_n = 0$