1201 微积分——分离变量法求原函数

 

题目: \(若函数f:(0,+∞)→(0,+∞)满足f^\prime(\frac{1}{x})=\frac{x}{f(x)},求f(x)\)

解法1:(原答案解法)

\[\begin{align} \\&首先用x替换\frac{1}{x},得到f^\prime(x)=\frac{1}{xf(\frac{1}{x})}\ \ \ \ \ \ \ —— ① \\&由题意有f^\prime(\frac{1}{x})=\frac{x}{f(x)} \ \ \ ——② \\&①②联立,整理得\frac{f^\prime(x)}{f(x)}=\frac{f^\prime{(\frac{1}{x}})}{x^2f(\frac{1}{x})} \\&即(\ln f(x))^\prime=-(\ln f(\frac{1}{x}))^\prime\ \Longrightarrow\ f(x)f(\frac{1}{x})=C\ \ \ ——③ \\&将①式代入,消去f(\frac{1}{x}),得\frac{f^\prime(x)}{f(x)}=\frac{1}{Cx} \\&积分得\ln f(x)=\frac{1}{C}\ln x+\ln D,即f(x)=Dx^\frac{1}{C}\ \ ——④ \\&由③式易得,f^2(1)=C,将④式代入,得D^2=C,即D=\sqrt{C} \\&故得f(x)=\sqrt{C}x^\frac{1}{C} \end{align}\]

解法2(另一种变形思路)

\[\begin{align} \\&第一步一样,用x替换\frac{1}{x}\Longrightarrow f^\prime(x)=\frac{1}{xf(\frac{1}{x})} \Longrightarrow f(\frac{1}{x})=\frac{1}{xf^\prime(x)} \\&两边求导得f^\prime(\frac{1}{x})(-\frac{1}{x^2})=-\frac{1}{x^2f^\prime(x)}-\frac{f^"(x)}{xf^\prime(x)^2} \\&又由于f^\prime(\frac{1}{x})=\frac{x}{f(x)} \\&联立得\frac{1}{f^\prime(x)}+\frac{xf^"(x)}{f^\prime(x)^2}=\frac{x}{f(x)} \\&记y=f(x),有f^"(x)=\frac{d^2y}{dx^2}=\frac{dy}{dx}·\frac{d\frac{dy}{dx}}{dy}=y^\prime\frac{dy^\prime}{dy} \\&代入得\frac{dx}{x}+\frac{dy^\prime}{y}=\frac{dy}{y},积分得\ln y=\ln y^\prime+\ln x +\ln C \Longrightarrow y=Cxy^\prime \\& \Longrightarrow \frac{1}{C}·\frac{dx}{x}=\frac{dy}{y} \ \ \Longrightarrow \frac{1}{C}\ln x+lnD=\ln y \ \ \Longrightarrow y=Dx^\frac{1}{C} \\&代回题目条件有D^2=C \\&即\ y=f(x)=\sqrt{C}x^\frac{1}{C} \end{align}\]