1220 微积分——各种中值定理

 

题目:(今天依旧是中值定理) \(f(x)在[0.3]上二阶可导,且有2f(0)=\int_0^2f(x)dx=f(2)+f(3). \\试证明:\exists\ \xi \in[0,3]使得f''(\xi)=0\)

解答:

\[\begin{align} 由介值定理\ & \exists \ \xi_1\in(2,3)\ ,f(\xi_1)=\frac12[f(2)+f(3)] \\由积分中值定理& \ \exists \xi_2\in(0,2)\ ,f(\xi_2)=\int_0^2f(x)dx \\则有&\ 2f(0)=2f(\xi_1)=2f(\xi_2) \\由罗尔定理\ \exists \ \eta_1\in&(0,\xi_2),\eta_2\in(\xi_2,\xi_1),使得 f^\prime(\eta_1) =f'(\eta_2)=0 \\再由罗尔定理&\ \exists \ \xi\in(\eta_1,\eta_2),使得f''(\xi)=0 \end{align}\]